HomeHome Metamath Proof Explorer
Theorem List (Table of Contents)
< Wrap  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page:  Detailed Table of Contents  Page List

Table of Contents Summary
PART 1  CLASSICAL FIRST ORDER LOGIC WITH EQUALITY
      1.1  Pre-logic
      1.2  Conventions
      1.3  Propositional calculus
      1.4  Other axiomatizations of classical propositional calculus
      1.5  Predicate calculus mostly without distinct variables
      1.6  Predicate calculus with distinct variables
      1.7  Other axiomatizations related to classical predicate calculus
PART 2  ZF (ZERMELO-FRAENKEL) SET THEORY
      2.1  ZF Set Theory - start with the Axiom of Extensionality
      2.2  ZF Set Theory - add the Axiom of Replacement
      2.3  ZF Set Theory - add the Axiom of Power Sets
      2.4  ZF Set Theory - add the Axiom of Union
      2.5  ZF Set Theory - add the Axiom of Regularity
      2.6  ZF Set Theory - add the Axiom of Infinity
PART 3  ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
      3.1  ZFC Set Theory - add Countable Choice and Dependent Choice
      3.2  ZFC Set Theory - add the Axiom of Choice
      3.3  ZFC Axioms with no distinct variable requirements
      3.4  The Generalized Continuum Hypothesis
PART 4  TG (TARSKI-GROTHENDIECK) SET THEORY
      4.1  Inaccessibles
      4.2  ZFC Set Theory plus the Tarksi-Grothendieck Axiom
PART 5  REAL AND COMPLEX NUMBERS
      5.1  Construction and axiomatization of real and complex numbers
      5.2  Derive the basic properties from the field axioms
      5.3  Real and complex numbers - basic operations
      5.4  Integer sets
      5.5  Order sets
      5.6  Elementary integer functions
      5.7  Elementary real and complex functions
      5.8  Elementary limits and convergence
      5.9  Elementary trigonometry
      5.10  Cardinality of real and complex number subsets
PART 6  ELEMENTARY NUMBER THEORY
      6.1  Elementary properties of divisibility
      6.2  Elementary prime number theory
PART 7  BASIC STRUCTURES
      7.1  Extensible structures
      7.2  Moore spaces
PART 8  BASIC CATEGORY THEORY
      8.1  Categories
      8.2  Arrows (disjointified hom-sets)
      8.3  Examples of categories
      8.4  Categorical constructions
PART 9  BASIC ORDER THEORY
      9.1  Presets and directed sets using extensible structures
      9.2  Posets and lattices using extensible structures
PART 10  BASIC ALGEBRAIC STRUCTURES
      10.1  Monoids
      10.2  Groups
      10.3  Abelian groups
      10.4  Rings
      10.5  Division rings and Fields
      10.6  Left Modules
      10.7  Vector Spaces
      10.8  Ideals
      10.9  Associative algebras
      10.10  Abstract Multivariate Polynomials
      10.11  The complex numbers as an extensible structure
      10.12  Hilbert spaces
PART 11  BASIC TOPOLOGY
      11.1  Topology
      11.2  Filters and filter bases
      11.3  Metric spaces
PART 12  BASIC REAL AND COMPLEX ANALYSIS
      12.1  Continuity
      12.2  Integrals
      12.3  Derivatives
PART 13  BASIC REAL AND COMPLEX FUNCTIONS
      13.1  Polynomials
      13.2  Sequences and series
      13.3  Basic trigonometry
      13.4  Basic number theory
PART 14  MISCELLANEA
      14.1  Definitional Examples
      14.2  Natural deduction examples
      14.3  Humor
      14.4  (Future - to be reviewed and classified)
PART 15  ADDITIONAL MATERIAL ON GROUPS, RINGS, AND FIELDS (DEPRECATED)
      15.1  Additional material on Group theory
      15.2  Additional material on Rings and Fields
PART 16  COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
      16.1  Complex vector spaces
      16.2  Normed complex vector spaces
      16.3  Operators on complex vector spaces
      16.4  Inner product (pre-Hilbert) spaces
      16.5  Complex Banach spaces
      16.6  Complex Hilbert spaces
PART 17  COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
      17.1  Axiomatization of complex pre-Hilbert spaces
      17.2  Inner product and norms
      17.3  Cauchy sequences and completeness axiom
      17.4  Subspaces and projections
      17.5  Properties of Hilbert subspaces
      17.6  Operators on Hilbert spaces
      17.7  States on an Hilbert lattice and Godowski's equation
      17.8  Cover relation, atoms, exchange axiom, and modular symmetry
PART 18  SUPPLEMENTARY MATERIAL (USER'S MATHBOXES)
      18.1  Mathboxes for user contributions
      18.2  Mathbox for Stefan Allan
      18.3  Mathbox for Thierry Arnoux
      18.4  Mathbox for Mario Carneiro
      18.5  Mathbox for Paul Chapman
      18.6  Mathbox for Drahflow
      18.7  Mathbox for Scott Fenton
      18.8  Mathbox for Anthony Hart
      18.9  Mathbox for Chen-Pang He
      18.10  Mathbox for Jeff Hoffman
      18.11  Mathbox for Wolf Lammen
      18.12  Mathbox for Frédéric Liné
      18.13  Mathbox for Jeff Hankins
      18.14  Mathbox for Jeff Madsen
      18.15  Mathbox for Rodolfo Medina
      18.16  Mathbox for Stefan O'Rear
      18.17  Mathbox for Steve Rodriguez
      18.18  Mathbox for Andrew Salmon
      18.19  Mathbox for Glauco Siliprandi
      18.20  Mathbox for Jarvin Udandy
      18.21  Mathbox for Alexander van der Vekens
      18.22  Mathbox for David A. Wheeler
      18.23  Mathbox for Alan Sare
      18.24  Mathbox for Jonathan Ben-Naim
      18.25  Mathbox for Norm Megill

Detailed Table of Contents
PART 1  CLASSICAL FIRST ORDER LOGIC WITH EQUALITY
      1.1  Pre-logic
            1.1.1  Inferences for assisting proof development   dummylink 1
      1.2  Conventions
      1.3  Propositional calculus
            1.3.1  Recursively define primitive wffs for propositional calculus   wn 5
            1.3.2  The axioms of propositional calculus   ax-1 7
            1.3.3  Logical implication   mp2b 11
            1.3.4  Logical negation   con4d 99
            1.3.5  Logical equivalence   wb 178
            1.3.6  Logical disjunction and conjunction   wo 359
            1.3.7  Miscellaneous theorems of propositional calculus   pm5.21nd 873
            1.3.8  Abbreviated conjunction and disjunction of three wff's   w3o 938
            1.3.9  Logical 'nand' (Sheffer stroke)   wnan 1292
            1.3.10  Logical 'xor'   wxo 1300
            1.3.11  True and false constants   wtru 1312
            1.3.12  Truth tables   truantru 1332
            1.3.13  Auxiliary theorems for Alan Sare's virtual deduction tool, part 1   ee22 1358
            1.3.14  Half-adders and full adders in propositional calculus   whad 1374
      1.4  Other axiomatizations of classical propositional calculus
            1.4.1  Derive the Lukasiewicz axioms from Meredith's sole axiom   meredith 1400
            1.4.2  Derive the standard axioms from the Lukasiewicz axioms   luklem1 1418
            1.4.3  Derive Nicod's axiom from the standard axioms   nic-dfim 1429
            1.4.4  Derive the Lukasiewicz axioms from Nicod's axiom   nic-imp 1435
            1.4.5  Derive Nicod's Axiom from Lukasiewicz's First Sheffer Stroke Axiom   lukshef-ax1 1454
            1.4.6  Derive the Lukasiewicz Axioms from the Tarski-Bernays-Wajsberg Axioms   tbw-bijust 1458
            1.4.7  Deriving the Tarski-Bernays-Wajsberg axioms from Meredith's First CO Axiom   merco1 1473
            1.4.8  Deriving the Tarski-Bernays-Wajsberg axioms from Meredith's Second CO Axiom   merco2 1496
            1.4.9  Derive the Lukasiewicz axioms from the The Russell-Bernays Axioms   rb-bijust 1509
            1.4.10  Stoic logic indemonstrables (Chrysippus of Soli)   mpto1 1528
      1.5  Predicate calculus mostly without distinct variables
            1.5.1  "Pure" (equality-free) predicate calculus axioms ax-5, ax-6, ax-7, ax-gen   wal 1532
            1.5.2  Introduce equality axioms ax-8, ax-11, ax-13, and ax-14   cv 1618
            1.5.3  Axiom ax-17 - first use of the $d distinct variable statement   ax-17 1628
            1.5.4  Introduce equality axioms ax-9v and ax-12   ax-9v 1632
            1.5.5  Derive ax-12o from ax-12   ax12o10lem1 1635
            1.5.6  Derive ax-10   ax10lem16 1665
            1.5.7  Derive ax-9 from the weaker version ax-9v   ax9 1683
            1.5.8  Introduce Axiom of Existence ax-9   ax-9 1684
            1.5.9  Derive ax-4, ax-5o, and ax-6o   ax4 1691
            1.5.10  "Pure" predicate calculus including ax-4, without distinct variables   a4i 1699
            1.5.11  Equality theorems without distinct variables   ax9o 1814
            1.5.12  Axioms ax-10 and ax-11   ax10o 1835
            1.5.13  Substitution (without distinct variables)   wsb 1883
            1.5.14  Theorems using axiom ax-11   equs5a 1912
      1.6  Predicate calculus with distinct variables
            1.6.1  Derive the axiom of distinct variables ax-16   a4imv 1923
            1.6.2  Derive the obsolete axiom of variable substitution ax-11o   ax11o 1940
            1.6.3  Theorems without distinct variables that use axiom ax-11o   ax11b 1943
            1.6.4  Predicate calculus with distinct variables (cont.)   ax11v 1991
            1.6.5  More substitution theorems   equsb3lem 2064
            1.6.6  Existential uniqueness   weu 2118
      1.7  Other axiomatizations related to classical predicate calculus
            1.7.1  Predicate calculus with all distinct variables   ax-7d 2209
            1.7.2  Aristotelian logic: Assertic syllogisms   barbara 2215
PART 2  ZF (ZERMELO-FRAENKEL) SET THEORY
      2.1  ZF Set Theory - start with the Axiom of Extensionality
            2.1.1  Introduce the Axiom of Extensionality   ax-ext 2239
            2.1.2  Class abstractions (a.k.a. class builders)   cab 2244
            2.1.3  Class form not-free predicate   wnfc 2381
            2.1.4  Negated equality and membership   wne 2421
            2.1.5  Restricted quantification   wral 2518
            2.1.6  The universal class   cvv 2763
            2.1.7  Conditional equality (experimental)   wcdeq 2949
            2.1.8  Russell's Paradox   ru 2965
            2.1.9  Proper substitution of classes for sets   wsbc 2966
            2.1.10  Proper substitution of classes for sets into classes   csb 3056
            2.1.11  Define basic set operations and relations   cdif 3124
            2.1.12  Subclasses and subsets   df-ss 3141
            2.1.13  The difference, union, and intersection of two classes   difeq1 3262
            2.1.14  The empty set   c0 3430
            2.1.15  "Weak deduction theorem" for set theory   cif 3539
            2.1.16  Power classes   cpw 3599
            2.1.17  Unordered and ordered pairs   csn 3614
            2.1.18  The union of a class   cuni 3801
            2.1.19  The intersection of a class   cint 3836
            2.1.20  Indexed union and intersection   ciun 3879
            2.1.21  Disjointness   wdisj 3967
            2.1.22  Binary relations   wbr 3997
            2.1.23  Ordered-pair class abstractions (class builders)   copab 4050
            2.1.24  Transitive classes   wtr 4087
      2.2  ZF Set Theory - add the Axiom of Replacement
            2.2.1  Introduce the Axiom of Replacement   ax-rep 4105
            2.2.2  Derive the Axiom of Separation   axsep 4114
            2.2.3  Derive the Null Set Axiom   zfnuleu 4120
            2.2.4  Theorems requiring subset and intersection existence   nalset 4125
            2.2.5  Theorems requiring empty set existence   class2set 4150
      2.3  ZF Set Theory - add the Axiom of Power Sets
            2.3.1  Introduce the Axiom of Power Sets   ax-pow 4160
            2.3.2  Derive the Axiom of Pairing   zfpair 4184
            2.3.3  Ordered pair theorem   opnz 4214
            2.3.4  Ordered-pair class abstractions (cont.)   opabid 4243
            2.3.5  Power class of union and intersection   pwin 4269
            2.3.6  Epsilon and identity relations   cep 4275
            2.3.7  Partial and complete ordering   wpo 4284
            2.3.8  Founded and well-ordering relations   wfr 4321
            2.3.9  Ordinals   word 4363
      2.4  ZF Set Theory - add the Axiom of Union
            2.4.1  Introduce the Axiom of Union   ax-un 4484
            2.4.2  Ordinals (continued)   ordon 4546
            2.4.3  Transfinite induction   tfi 4616
            2.4.4  The natural numbers (i.e. finite ordinals)   com 4628
            2.4.5  Peano's postulates   peano1 4647
            2.4.6  Finite induction (for finite ordinals)   find 4653
            2.4.7  Functions and relations   cxp 4659
            2.4.8  Operations   co 5792
            2.4.9  "Maps to" notation   elmpt2cl 5995
            2.4.10  Function operation   cof 6010
            2.4.11  First and second members of an ordered pair   c1st 6054
            2.4.12  Function transposition   ctpos 6167
            2.4.13  Curry and uncurry   ccur 6206
            2.4.14  Proper subset relation   crpss 6210
            2.4.15  Definite description binder (inverted iota)   cio 6223
            2.4.16  Cantor's Theorem   canth 6260
            2.4.17  Undefined values and restricted iota (description binder)   cund 6262
            2.4.18  Functions on ordinals; strictly monotone ordinal functions   iunon 6323
            2.4.19  "Strong" transfinite recursion   crecs 6355
            2.4.20  Recursive definition generator   crdg 6390
            2.4.21  Finite recursion   frfnom 6415
            2.4.22  Abian's "most fundamental" fixed point theorem   abianfplem 6438
            2.4.23  Ordinal arithmetic   c1o 6440
            2.4.24  Natural number arithmetic   nna0 6570
            2.4.25  Equivalence relations and classes   wer 6625
            2.4.26  The mapping operation   cmap 6740
            2.4.27  Infinite Cartesian products   cixp 6785
            2.4.28  Equinumerosity   cen 6828
            2.4.29  Schroeder-Bernstein Theorem   sbthlem1 6939
            2.4.30  Equinumerosity (cont.)   xpf1o 6991
            2.4.31  Pigeonhole Principle   phplem1 7008
            2.4.32  Finite sets   onomeneq 7018
            2.4.33  Finite intersections   cfi 7132
            2.4.34  Hall's marriage theorem   marypha1lem 7154
            2.4.35  Supremum   csup 7161
            2.4.36  Ordinal isomorphism, Hartog's theorem   coi 7192
            2.4.37  Hartogs function, order types, weak dominance   char 7238
      2.5  ZF Set Theory - add the Axiom of Regularity
            2.5.1  Introduce the Axiom of Regularity   ax-reg 7274
            2.5.2  Axiom of Infinity equivalents   inf0 7290
      2.6  ZF Set Theory - add the Axiom of Infinity
            2.6.1  Introduce the Axiom of Infinity   ax-inf 7307
            2.6.2  Existence of omega (the set of natural numbers)   omex 7312
            2.6.3  Cantor normal form   ccnf 7330
            2.6.4  Transitive closure   trcl 7378
            2.6.5  Rank   cr1 7402
            2.6.6  Scott's trick; collection principle; Hilbert's epsilon   scottex 7523
            2.6.7  Cardinal numbers   ccrd 7536
            2.6.8  Axiom of Choice equivalents   wac 7710
            2.6.9  Cardinal number arithmetic   ccda 7761
            2.6.10  The Ackermann bijection   ackbij2lem1 7813
            2.6.11  Cofinality (without Axiom of Choice)   cflem 7840
            2.6.12  Eight inequivalent definitions of finite set   sornom 7871
            2.6.13  Hereditarily size-limited sets without Choice   itunifval 8010
PART 3  ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
      3.1  ZFC Set Theory - add Countable Choice and Dependent Choice
      3.2  ZFC Set Theory - add the Axiom of Choice
            3.2.1  Introduce the Axiom of Choice   ax-ac 8053
            3.2.2  AC equivalents: well ordering, Zorn's lemma   numthcor 8089
            3.2.3  Cardinal number theorems using Axiom of Choice   cardval 8136
            3.2.4  Cardinal number arithmetic using Axiom of Choice   iunctb 8164
            3.2.5  Cofinality using Axiom of Choice   alephreg 8172
      3.3  ZFC Axioms with no distinct variable requirements
      3.4  The Generalized Continuum Hypothesis
PART 4  TG (TARSKI-GROTHENDIECK) SET THEORY
      4.1  Inaccessibles
            4.1.1  Weakly and strongly inaccessible cardinals   cwina 8272
            4.1.2  Weak universes   cwun 8290
            4.1.3  Tarski's classes   ctsk 8338
            4.1.4  Grothendieck's universes   cgru 8380
      4.2  ZFC Set Theory plus the Tarksi-Grothendieck Axiom
            4.2.1  Introduce the Tarksi-Grothendieck Axiom   ax-groth 8413
            4.2.2  Derive the Power Set, Infinity and Choice Axioms   grothpw 8416
            4.2.3  Tarski map function   ctskm 8427
PART 5  REAL AND COMPLEX NUMBERS
      5.1  Construction and axiomatization of real and complex numbers
            5.1.1  Dedekind-cut construction of real and complex numbers   cnpi 8434
            5.1.2  Final derivation of real and complex number postulates   axaddf 8735
            5.1.3  Real and complex number postulates restated as axioms   ax-cnex 8761
      5.2  Derive the basic properties from the field axioms
            5.2.1  Some deductions from the field axioms for complex numbers   cnex 8786
            5.2.2  Infinity and the extended real number system   cpnf 8832
            5.2.3  Restate the ordering postulates with extended real "less than"   axlttri 8862
            5.2.4  Ordering on reals   lttr 8867
            5.2.5  Initial properties of the complex numbers   mul12 8946
      5.3  Real and complex numbers - basic operations
            5.3.1  Addition   add12 8993
            5.3.2  Subtraction   cmin 9005
            5.3.3  Multiplication   muladd 9180
            5.3.4  Ordering on reals (cont.)   gt0ne0 9207
            5.3.5  Reciprocals   ixi 9365
            5.3.6  Division   cdiv 9391
            5.3.7  Ordering on reals (cont.)   elimgt0 9560
            5.3.8  Completeness Axiom and Suprema   fimaxre 9669
            5.3.9  Imaginary and complex number properties   inelr 9704
            5.3.10  Function operation analogue theorems   ofsubeq0 9711
      5.4  Integer sets
            5.4.1  Natural numbers (as a subset of complex numbers)   cn 9714
            5.4.2  Principle of mathematical induction   nnind 9732
            5.4.3  Decimal representation of numbers   c2 9763
            5.4.4  Some properties of specific numbers   0p1e1 9807
            5.4.5  The Archimedean property   nnunb 9928
            5.4.6  Nonnegative integers (as a subset of complex numbers)   cn0 9932
            5.4.7  Integers (as a subset of complex numbers)   cz 9991
            5.4.8  Decimal arithmetic   cdc 10091
            5.4.9  Upper partititions of integers   cuz 10197
            5.4.10  Well-ordering principle for bounded-below sets of integers   uzwo3 10278
            5.4.11  Rational numbers (as a subset of complex numbers)   cq 10283
            5.4.12  Existence of the set of complex numbers   rpnnen1lem1 10309
      5.5  Order sets
            5.5.1  Positive reals (as a subset of complex numbers)   crp 10321
            5.5.2  Infinity and the extended real number system (cont.)   cxne 10416
            5.5.3  Supremum on the extended reals   xrsupexmnf 10589
            5.5.4  Real number intervals   cioo 10622
            5.5.5  Finite intervals of integers   cfz 10748
            5.5.6  Half-open integer ranges   cfzo 10836
      5.6  Elementary integer functions
            5.6.1  The floor (greatest integer) function   cfl 10890
            5.6.2  The modulo (remainder) operation   cmo 10939
            5.6.3  The infinite sequence builder "seq"   om2uz0i 10976
            5.6.4  Integer powers   cexp 11070
            5.6.5  Ordered pair theorem for nonnegative integers   nn0le2msqi 11248
            5.6.6  Factorial function   cfa 11254
            5.6.7  The binomial coefficient operation   cbc 11281
            5.6.8  The ` # ` (finite set size) function   chash 11303
            5.6.9  Words over a set   cword 11368
            5.6.10  Longer string literals   cs2 11456
      5.7  Elementary real and complex functions
            5.7.1  The "shift" operation   cshi 11526
            5.7.2  Real and imaginary parts; conjugate   ccj 11546
            5.7.3  Square root; absolute value   csqr 11683
      5.8  Elementary limits and convergence
            5.8.1  Superior limit (lim sup)   clsp 11909
            5.8.2  Limits   cli 11923
            5.8.3  Finite and infinite sums   csu 12123
            5.8.4  The binomial theorem   binomlem 12252
            5.8.5  Infinite sums (cont.)   isumshft 12260
            5.8.6  Miscellaneous converging and diverging sequences   divrcnv 12273
            5.8.7  Arithmetic series   arisum 12280
            5.8.8  Geometric series   expcnv 12284
            5.8.9  Ratio test for infinite series convergence   cvgrat 12301
            5.8.10  Mertens' theorem   mertenslem1 12302
      5.9  Elementary trigonometry
            5.9.1  The exponential, sine, and cosine functions   ce 12305
            5.9.2  _e is irrational   eirrlem 12444
      5.10  Cardinality of real and complex number subsets
            5.10.1  Countability of integers and rationals   xpnnen 12449
            5.10.2  The reals are uncountable   rpnnen2lem1 12455
PART 6  ELEMENTARY NUMBER THEORY
      6.1  Elementary properties of divisibility
            6.1.1  Irrationality of square root of 2   sqr2irrlem 12488
            6.1.2  Some Number sets are chains of proper subsets   nthruc 12491
            6.1.3  The divides relation   cdivides 12493
            6.1.4  The division algorithm   divalglem0 12554
            6.1.5  Bit sequences   cbits 12572
            6.1.6  The greatest common divisor operator   cgcd 12647
            6.1.7  Bézout's identity   bezoutlem1 12679
            6.1.8  Algorithms   nn0seqcvgd 12702
            6.1.9  Euclid's Algorithm   eucalgval2 12713
      6.2  Elementary prime number theory
            6.2.1  Elementary properties   cprime 12720
            6.2.2  Properties of the canonical representation of a rational   cnumer 12766
            6.2.3  Euler's theorem   codz 12793
            6.2.4  Pythagorean Triples   coprimeprodsq 12824
            6.2.5  The prime count function   cpc 12851
            6.2.6  Pocklington's theorem   prmpwdvds 12913
            6.2.7  Infinite primes theorem   unbenlem 12917
            6.2.8  Sum of prime reciprocals   prmreclem1 12925
            6.2.9  Fundamental theorem of arithmetic   1arithlem1 12932
            6.2.10  Lagrange's four-square theorem   cgz 12938
            6.2.11  Van der Waerden's theorem   cvdwa 12974
            6.2.12  Ramsey's theorem   cram 13008
            6.2.13  Decimal arithmetic (cont.)   dec2dvds 13040
            6.2.14  Specific prime numbers   4nprm 13068
            6.2.15  Very large primes   1259lem1 13091
PART 7  BASIC STRUCTURES
      7.1  Extensible structures
            7.1.1  Basic definitions   cstr 13106
            7.1.2  Slot definitions   cplusg 13170
            7.1.3  Definition of the structure product   crest 13287
            7.1.4  Definition of the structure quotient   cordt 13360
      7.2  Moore spaces
            7.2.1  Moore closures   mrcflem 13470
            7.2.2  Independent sets in a Moore system   mrisval 13494
            7.2.3  Algebraic closure systems   isacs 13515
PART 8  BASIC CATEGORY THEORY
      8.1  Categories
            8.1.1  Categories   ccat 13528
            8.1.2  Opposite category   coppc 13576
            8.1.3  Monomorphisms and epimorphisms   cmon 13593
            8.1.4  Sections, inverses, isomorphisms   csect 13609
            8.1.5  Subcategories   cssc 13646
            8.1.6  Functors   cfunc 13690
            8.1.7  Full & faithful functors   cful 13738
            8.1.8  Natural transformations and the functor category   cnat 13777
      8.2  Arrows (disjointified hom-sets)
            8.2.1  Identity and composition for arrows   cida 13847
      8.3  Examples of categories
            8.3.1  The category of sets   csetc 13869
            8.3.2  The category of categories   ccatc 13888
      8.4  Categorical constructions
            8.4.1  Product of categories   cxpc 13904
            8.4.2  Functor evaluation   cevlf 13945
            8.4.3  Hom functor   chof 13984
PART 9  BASIC ORDER THEORY
      9.1  Presets and directed sets using extensible structures
      9.2  Posets and lattices using extensible structures
            9.2.1  Posets   cpo 14036
            9.2.2  Lattices   clat 14113
            9.2.3  The dual of an ordered set   codu 14194
            9.2.4  Subset order structures   cipo 14216
            9.2.5  Distributive lattices   latmass 14253
            9.2.6  Posets and lattices as relations   cps 14263
            9.2.7  Directed sets, nets   cdir 14312
PART 10  BASIC ALGEBRAIC STRUCTURES
      10.1  Monoids
            10.1.1  Definition and basic properties   cmnd 14323
            10.1.2  Monoid homomorphisms and submonoids   cmhm 14375
            10.1.3  Ordered group sum operation   gsumvallem1 14410
            10.1.4  Free monoids   cfrmd 14431
      10.2  Groups
            10.2.1  Definition and basic properties   df-grp 14451
            10.2.2  Subgroups and Quotient groups   csubg 14577
            10.2.3  Elementary theory of group homomorphisms   cghm 14642
            10.2.4  Isomorphisms of groups   cgim 14683
            10.2.5  Group actions   cga 14705
            10.2.6  Symmetry groups and Cayley's Theorem   csymg 14731
            10.2.7  Centralizers and centers   ccntz 14753
            10.2.8  The opposite group   coppg 14780
            10.2.9  p-Groups and Sylow groups; Sylow's theorems   cod 14802
            10.2.10  Direct products   clsm 14907
            10.2.11  Free groups   cefg 14977
      10.3  Abelian groups
            10.3.1  Definition and basic properties   ccmn 15051
            10.3.2  Cyclic groups   ccyg 15126
            10.3.3  Group sum operation   gsumval3a 15151
            10.3.4  Internal direct products   cdprd 15193
            10.3.5  The Fundamental Theorem of Abelian Groups   ablfacrplem 15262
      10.4  Rings
            10.4.1  Multiplicative Group   cmgp 15287
            10.4.2  Definition and basic properties   crg 15299
            10.4.3  Opposite ring   coppr 15366
            10.4.4  Divisibility   cdsr 15382
            10.4.5  Ring homomorphisms   crh 15456
      10.5  Division rings and Fields
            10.5.1  Definition and basic properties   cdr 15474
            10.5.2  Subrings of a ring   csubrg 15503
            10.5.3  Absolute value (abstract algebra)   cabv 15543
            10.5.4  Star rings   cstf 15570
      10.6  Left Modules
            10.6.1  Definition and basic properties   clmod 15589
            10.6.2  Subspaces and spans in a left module   clss 15651
            10.6.3  Homomorphisms and isomorphisms of left modules   clmhm 15738
            10.6.4  Subspace sum; bases for a left module   clbs 15789
      10.7  Vector Spaces
            10.7.1  Definition and basic properties   clvec 15817
      10.8  Ideals
            10.8.1  The subring algebra; ideals   csra 15883
            10.8.2  Two-sided ideals and quotient rings   c2idl 15945
            10.8.3  Principal ideal rings. Divisibility in the integers   clpidl 15955
            10.8.4  Nonzero rings   cnzr 15971
            10.8.5  Left regular elements. More kinds of ring   crlreg 15982
      10.9  Associative algebras
            10.9.1  Definition and basic properties   casa 16012
      10.10  Abstract Multivariate Polynomials
            10.10.1  Definition and basic properties   cmps 16049
            10.10.2  Polynomial evaluation   evlslem4 16207
            10.10.3  Univariate Polynomials   cps1 16212
      10.11  The complex numbers as an extensible structure
            10.11.1  Definition and basic properties   cxmt 16331
            10.11.2  Algebraic constructions based on the complexes   czrh 16413
      10.12  Hilbert spaces
            10.12.1  Definition and basic properties   cphl 16490
            10.12.2  Orthocomplements and closed subspaces   cocv 16522
            10.12.3  Orthogonal projection and orthonormal bases   cpj 16562
PART 11  BASIC TOPOLOGY
      11.1  Topology
            11.1.1  Topological spaces   ctop 16593
            11.1.2  TopBases for topologies   isbasisg 16647
            11.1.3  Examples of topologies   distop 16695
            11.1.4  Closure and interior   ccld 16715
            11.1.5  Neighborhoods   cnei 16796
            11.1.6  Limit points and perfect sets   clp 16828
            11.1.7  Subspace topologies   restrcl 16850
            11.1.8  Order topology   ordtbaslem 16880
            11.1.9  Limits and Continuity in topological spaces   ccn 16916
            11.1.10  Separated spaces: T0, T1, T2 (Hausdorff) ...   ct0 16996
            11.1.11  Compactness   ccmp 17075
            11.1.12  Connectedness   ccon 17099
            11.1.13  First- and second-countability   c1stc 17125
            11.1.14  Local topological properties   clly 17152
            11.1.15  Compactly generated spaces   ckgen 17190
            11.1.16  Product topologies   ctx 17217
            11.1.17  Continuous function-builders   cnmptid 17317
            11.1.18  Quotient maps and quotient topology   ckq 17346
            11.1.19  Homeomorphisms   chmeo 17406
      11.2  Filters and filter bases
            11.2.1  Filter Bases   cfbas 17480
            11.2.2  Filters   cfil 17502
            11.2.3  Ultrafilters   cufil 17556
            11.2.4  Filter limits   cfm 17590
            11.2.5  Topological groups   ctmd 17715
            11.2.6  Infinite group sum on topological groups   ctsu 17770
            11.2.7  Topological rings, fields, vector spaces   ctrg 17800
      11.3  Metric spaces
            11.3.1  Basic metric space properties   cxme 17844
            11.3.2  Metric space balls   blfval 17909
            11.3.3  Open sets of a metric space   mopnval 17946
            11.3.4  Continuity in metric spaces   metcnp3 18048
            11.3.5  Examples of metric spaces   dscmet 18057
            11.3.6  Normed algebraic structures   cnm 18061
            11.3.7  Normed space homomorphisms (bounded linear operators)   cnmo 18176
            11.3.8  Topology on the Reals   qtopbaslem 18229
            11.3.9  Topological definitions using the reals   cii 18341
            11.3.10  Path homotopy   chtpy 18427
            11.3.11  The fundamental group   cpco 18460
            11.3.12  Complex left modules   cclm 18522
            11.3.13  Complex pre-Hilbert space   ccph 18564
            11.3.14  Convergence and completeness   ccfil 18640
            11.3.15  Baire's Category Theorem   bcthlem1 18708
            11.3.16  Banach spaces and complex Hilbert spaces   ccms 18716
            11.3.17  Minimizing Vector Theorem   minveclem1 18750
            11.3.18  Projection theorem   pjthlem1 18763
PART 12  BASIC REAL AND COMPLEX ANALYSIS
      12.1  Continuity
            12.1.1  Intermediate value theorem   pmltpclem1 18770
      12.2  Integrals
            12.2.1  Lebesgue measure   covol 18784
            12.2.2  Lebesgue integration   cmbf 18931
      12.3  Derivatives
            12.3.1  Real and Complex Differentiation   climc 19174
PART 13  BASIC REAL AND COMPLEX FUNCTIONS
      13.1  Polynomials
            13.1.1  Abstract polynomials, continued   evlslem6 19359
            13.1.2  Polynomial degrees   cmdg 19401
            13.1.3  The division algorithm for univariate polynomials   cmn1 19473
            13.1.4  Elementary properties of complex polynomials   cply 19528
            13.1.5  The Division algorithm for polynomials   cquot 19632
            13.1.6  Algebraic numbers   caa 19656
            13.1.7  Liouville's approximation theorem   aalioulem1 19674
      13.2  Sequences and series
            13.2.1  Taylor polynomials and Taylor's theorem   ctayl 19694
            13.2.2  Uniform convergence   culm 19717
            13.2.3  Power series   pserval 19748
      13.3  Basic trigonometry
            13.3.1  The exponential, sine, and cosine functions (cont.)   efcn 19781
            13.3.2  Properties of pi = 3.14159...   pilem1 19789
            13.3.3  Mapping of the exponential function   efgh 19865
            13.3.4  The natural logarithm on complex numbers   clog 19874
            13.3.5  Theorems of Pythagoras, isosceles triangles, and intersecting chords   angval 20061
            13.3.6  Solutions of quadratic, cubic, and quartic equations   quad2 20097
            13.3.7  Inverse trigonometric functions   casin 20120
            13.3.8  The Birthday Problem   log2ublem1 20204
            13.3.9  Areas in R^2   carea 20212
            13.3.10  More miscellaneous converging sequences   rlimcnp 20222
            13.3.11  Inequality of arithmetic and geometric means   cvxcl 20241
            13.3.12  Euler-Mascheroni constant   cem 20248
      13.4  Basic number theory
            13.4.1  Wilson's theorem   wilthlem1 20268
            13.4.2  The Fundamental Theorem of Algebra   ftalem1 20272
            13.4.3  The Basel problem (ζ(2) = π2/6)   basellem1 20280
            13.4.4  Number-theoretical functions   ccht 20290
            13.4.5  Perfect Number Theorem   mersenne 20428
            13.4.6  Characters of Z/nZ   cdchr 20433
            13.4.7  Bertrand's postulate   bcctr 20476
            13.4.8  Legendre symbol   clgs 20495
            13.4.9  Quadratic Reciprocity   lgseisenlem1 20550
            13.4.10  All primes 4n+1 are the sum of two squares   2sqlem1 20564
            13.4.11  Chebyshev's Weak Prime Number Theorem, Dirichlet's Theorem   chebbnd1lem1 20580
            13.4.12  The Prime Number Theorem   mudivsum 20641
            13.4.13  Ostrowski's theorem   abvcxp 20726
PART 14  MISCELLANEA
      14.1  Definitional Examples
      14.2  Natural deduction examples
      14.3  Humor
            14.3.1  April Fool's theorem   avril1 20796
      14.4  (Future - to be reviewed and classified)
            14.4.1  Planar incidence geometry   cplig 20802
            14.4.2  Algebra preliminaries   crpm 20807
            14.4.3  Transitive closure   ctcl 20809
PART 15  ADDITIONAL MATERIAL ON GROUPS, RINGS, AND FIELDS (DEPRECATED)
      15.1  Additional material on Group theory
            15.1.1  Definitions and basic properties for groups   cgr 20813
            15.1.2  Definition and basic properties of Abelian groups   cablo 20908
            15.1.3  Subgroups   csubgo 20928
            15.1.4  Operation properties   cass 20939
            15.1.5  Group-like structures   cmagm 20945
            15.1.6  Examples of Abelian groups   ablosn 20974
            15.1.7  Group homomorphism and isomorphism   cghom 20984
      15.2  Additional material on Rings and Fields
            15.2.1  Definition and basic properties   crngo 21002
            15.2.2  Examples of rings   cnrngo 21030
            15.2.3  Division Rings   cdrng 21032
            15.2.4  Star Fields   csfld 21035
            15.2.5  Fields and Rings   ccm2 21037
PART 16  COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
      16.1  Complex vector spaces
            16.1.1  Definition and basic properties   cvc 21061
            16.1.2  Examples of complex vector spaces   cncvc 21099
      16.2  Normed complex vector spaces
            16.2.1  Definition and basic properties   cnv 21100
            16.2.2  Examples of normed complex vector spaces   cnnv 21205
            16.2.3  Induced metric of a normed complex vector space   imsval 21214
            16.2.4  Inner product   cdip 21233
            16.2.5  Subspaces   css 21257
      16.3  Operators on complex vector spaces
            16.3.1  Definitions and basic properties   clno 21278
      16.4  Inner product (pre-Hilbert) spaces
            16.4.1  Definition and basic properties   ccphlo 21350
            16.4.2  Examples of pre-Hilbert spaces   cncph 21357
            16.4.3  Properties of pre-Hilbert spaces   isph 21360
      16.5  Complex Banach spaces
            16.5.1  Definition and basic properties   ccbn 21401
            16.5.2  Examples of complex Banach spaces   cnbn 21408
            16.5.3  Uniform Boundedness Theorem   ubthlem1 21409
            16.5.4  Minimizing Vector Theorem   minvecolem1 21413
      16.6  Complex Hilbert spaces
            16.6.1  Definition and basic properties   chlo 21424
            16.6.2  Standard axioms for a complex Hilbert space   hlex 21437
            16.6.3  Examples of complex Hilbert spaces   cnchl 21455
            16.6.4  Subspaces   ssphl 21456
            16.6.5  Hellinger-Toeplitz Theorem   htthlem 21457
PART 17  COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
      17.1  Axiomatization of complex pre-Hilbert spaces
            17.1.1  Basic Hilbert space definitions   chil 21459
            17.1.2  Preliminary ZFC lemmas   df-hnorm 21508
            17.1.3  Derive the Hilbert space axioms from ZFC set theory   axhilex-zf 21521
            17.1.4  Introduce the vector space axioms for a Hilbert space   ax-hilex 21539
            17.1.5  Vector operations   hvmulex 21551
            17.1.6  Inner product postulates for a Hilbert space   ax-hfi 21618
      17.2  Inner product and norms
            17.2.1  Inner product   his5 21625
            17.2.2  Norms   dfhnorm2 21661
            17.2.3  Relate Hilbert space to normed complex vector spaces   hilablo 21699
            17.2.4  Bunjakovaskij-Cauchy-Schwarz inequality   bcsiALT 21718
      17.3  Cauchy sequences and completeness axiom
            17.3.1  Cauchy sequences and limits   hcau 21723
            17.3.2  Derivation of the completeness axiom from ZF set theory   hilmet 21733
            17.3.3  Completeness postulate for a Hilbert space   ax-hcompl 21741
            17.3.4  Relate Hilbert space to ZFC pre-Hilbert and Hilbert spaces   hhcms 21742
      17.4  Subspaces and projections
            17.4.1  Subspaces   df-sh 21746
            17.4.2  Closed subspaces   df-ch 21761
            17.4.3  Orthocomplements   df-oc 21791
            17.4.4  Subspace sum, span, lattice join, lattice supremum   df-shs 21847
            17.4.5  Projection theorem   pjhthlem1 21930
            17.4.6  Projectors   df-pjh 21934
      17.5  Properties of Hilbert subspaces
            17.5.1  Orthomodular law   omlsilem 21941
            17.5.2  Projectors (cont.)   pjhtheu2 21955
            17.5.3  Hilbert lattice operations   sh0le 21979
            17.5.4  Span (cont.) and one-dimensional subspaces   spansn0 22080
            17.5.5  Commutes relation for Hilbert lattice elements   df-cm 22122
            17.5.6  Foulis-Holland theorem   fh1 22157
            17.5.7  Quantum Logic Explorer axioms   qlax1i 22166
            17.5.8  Orthogonal subspaces   chscllem1 22176
            17.5.9  Orthoarguesian laws 5OA and 3OA   5oalem1 22193
            17.5.10  Projectors (cont.)   pjorthi 22208
            17.5.11  Mayet's equation E_3   mayete3i 22267
      17.6  Operators on Hilbert spaces
            17.6.1  Operator sum, difference, and scalar multiplication   df-hosum 22270
            17.6.2  Zero and identity operators   df-h0op 22288
            17.6.3  Operations on Hilbert space operators   hoaddcl 22298
            17.6.4  Linear, continuous, bounded, Hermitian, unitary operators and norms   df-nmop 22379
            17.6.5  Linear and continuous functionals and norms   df-nmfn 22385
            17.6.6  Adjoint   df-adjh 22389
            17.6.7  Dirac bra-ket notation   df-bra 22390
            17.6.8  Positive operators   df-leop 22392
            17.6.9  Eigenvectors, eigenvalues, spectrum   df-eigvec 22393
            17.6.10  Theorems about operators and functionals   nmopval 22396
            17.6.11  Riesz lemma   riesz3i 22602
            17.6.12  Adjoints (cont.)   cnlnadjlem1 22607
            17.6.13  Quantum computation error bound theorem   unierri 22644
            17.6.14  Dirac bra-ket notation (cont.)   branmfn 22645
            17.6.15  Positive operators (cont.)   leopg 22662
            17.6.16  Projectors as operators   pjhmopi 22686
      17.7  States on an Hilbert lattice and Godowski's equation
            17.7.1  States on a Hilbert lattice   df-st 22751
            17.7.2  Godowski's equation   golem1 22811
      17.8  Cover relation, atoms, exchange axiom, and modular symmetry
            17.8.1  Covers relation; modular pairs   df-cv 22819
            17.8.2  Atoms   df-at 22878
            17.8.3  Superposition principle   superpos 22894
            17.8.4  Atoms, exchange and covering properties, atomicity   chcv1 22895
            17.8.5  Irreducibility   chirredlem1 22930
            17.8.6  Atoms (cont.)   atcvat3i 22936
            17.8.7  Modular symmetry   mdsymlem1 22943
PART 18  SUPPLEMENTARY MATERIAL (USER'S MATHBOXES)
      18.1  Mathboxes for user contributions
            18.1.1  Mathbox guidelines   mathbox 22982
      18.2  Mathbox for Stefan Allan
      18.3  Mathbox for Thierry Arnoux
            18.3.1  Bertrand's Ballot Problem   ballotlemoex 23005
      18.4  Mathbox for Mario Carneiro
            18.4.1  Miscellaneous stuff   quartfull 23058
            18.4.2  Zeta function   czeta 23059
            18.4.3  Gamma function   clgam 23062
            18.4.4  Derangements and the Subfactorial   deranglem 23069
            18.4.5  The Erdős-Szekeres theorem   erdszelem1 23094
            18.4.6  The Kuratowski closure-complement theorem   kur14lem1 23109
            18.4.7  Retracts and sections   cretr 23120
            18.4.8  Path-connected and simply connected spaces   cpcon 23122
            18.4.9  Covering maps   ccvm 23158
            18.4.10  Undirected multigraphs   cumg 23232
            18.4.11  Normal numbers   snmlff 23284
            18.4.12  Godel-sets of formulas   cgoe 23288
            18.4.13  Models of ZF   cgze 23316
            18.4.14  Splitting fields   citr 23330
            18.4.15  p-adic number fields   czr 23346
      18.5  Mathbox for Paul Chapman
            18.5.1  Group homomorphism and isomorphism   ghomgrpilem1 23364
            18.5.2  Real and complex numbers (cont.)   climuzcnv 23376
            18.5.3  Miscellaneous theorems   elfzm12 23380
      18.6  Mathbox for Drahflow
      18.7  Mathbox for Scott Fenton
            18.7.1  ZFC Axioms in primitive form   axextprim 23419
            18.7.2  Untangled classes   untelirr 23426
            18.7.3  Extra propositional calculus theorems   3orel1 23433
            18.7.4  Misc. Useful Theorems   nepss 23444
            18.7.5  Properties of reals and complexes   sqdivzi 23450
            18.7.6  Greatest common divisor and divisibility   pdivsq 23473
            18.7.7  Properties of relationships   brtp 23477
            18.7.8  Properties of functions and mappings   funpsstri 23490
            18.7.9  Epsilon induction   setinds 23503
            18.7.10  Ordinal numbers   elpotr 23506
            18.7.11  Defined equality axioms   axextdfeq 23523
            18.7.12  Hypothesis builders   hbntg 23531
            18.7.13  The Predecessor Class   cpred 23536
            18.7.14  (Trans)finite Recursion Theorems   tfisg 23573
            18.7.15  Well-founded induction   tz6.26 23574
            18.7.16  Transitive closure under a relationship   ctrpred 23589
            18.7.17  Founded Induction   frmin 23611
            18.7.18  Ordering Ordinal Sequences   orderseqlem 23621
            18.7.19  Well-founded recursion   wfr3g 23624
            18.7.20  Transfinite recursion via Well-founded recursion   tfrALTlem 23645
            18.7.21  Founded Recursion   frr3g 23649
            18.7.22  Surreal Numbers   csur 23663
            18.7.23  Surreal Numbers: Ordering   axsltsolem1 23690
            18.7.24  Surreal Numbers: Birthday Function   axbday 23697
            18.7.25  Surreal Numbers: Density   axdenselem1 23704
            18.7.26  Surreal Numbers: Full-Eta Property   axfelem1 23715
            18.7.27  Symmetric difference   csymdif 23737
            18.7.28  Quantifier-free definitions   ctxp 23749
            18.7.29  Alternate ordered pairs   caltop 23865
            18.7.30  Tarskian geometry   cee 23891
            18.7.31  Tarski's axioms for geometry   axdimuniq 23916
            18.7.32  Congruence properties   cofs 23980
            18.7.33  Betweenness properties   btwntriv2 24010
            18.7.34  Segment Transportation   ctransport 24027
            18.7.35  Properties relating betweenness and congruence   cifs 24033
            18.7.36  Connectivity of betweenness   btwnconn1lem1 24085
            18.7.37  Segment less than or equal to   csegle 24104
            18.7.38  Outside of relationship   coutsideof 24117
            18.7.39  Lines and Rays   cline2 24132
            18.7.40  Bernoulli polynomials and sums of k-th powers   cbp 24156
            18.7.41  Rank theorems   rankung 24171
            18.7.42  Hereditarily Finite Sets   chf 24177
      18.8  Mathbox for Anthony Hart
            18.8.1  Propositional Calculus   tb-ax1 24192
            18.8.2  Predicate Calculus   quantriv 24214
            18.8.3  Misc. Single Axiom Systems   meran1 24225
            18.8.4  Connective Symmetry   negsym1 24231
      18.9  Mathbox for Chen-Pang He
            18.9.1  Ordinal topology   ontopbas 24242
      18.10  Mathbox for Jeff Hoffman
            18.10.1  Inferences for finite induction on generic function values   fveleq 24265
            18.10.2  gdc.mm   nnssi2 24269
      18.11  Mathbox for Wolf Lammen
      18.12  Mathbox for Frédéric Liné
            18.12.1  Theorems from other workspaces   tpssg 24298
            18.12.2  Propositional and predicate calculus   neleq12d 24299
            18.12.3  Linear temporal logic   wbox 24336
            18.12.4  Operations   ssoprab2g 24398
            18.12.5  General Set Theory   uninqs 24405
            18.12.6  The "maps to" notation   cmpfun 24509
            18.12.7  Cartesian Products   cpro 24517
            18.12.8  Operations on subsets and functions   ccst 24539
            18.12.9  Arithmetic   3timesi 24545
            18.12.10  Lattice (algebraic definition)   clatalg 24548
            18.12.11  Currying and Partial Mappings   ccur1 24561
            18.12.12  Order theory (Extensible Structure Builder)   corhom 24574
            18.12.13  Order theory   cpresetrel 24582
            18.12.14  Finite composites ( i. e. finite sums, products ... )   cprd 24665
            18.12.15  Operation properties   ccm1 24698
            18.12.16  Groups and related structures   ridlideq 24702
            18.12.17  Free structures   csubsmg 24750
            18.12.18  Translations   trdom2 24758
            18.12.19  Fields and Rings   com2i 24783
            18.12.20  Ideals   cidln 24810
            18.12.21  Generic modules and vector spaces (New Structure builder)   cact 24814
            18.12.22  Generic modules and vector spaces   cvec 24816
            18.12.23  Real vector spaces   cvr 24856
            18.12.24  Matrices   cmmat 24860
            18.12.25  Affine spaces   craffsp 24866
            18.12.26  Intervals of reals and extended reals   bsi 24868
            18.12.27  Topology   topnem 24879
            18.12.28  Continuous functions   cnrsfin 24892
            18.12.29  Homeomorphisms   dmhmph 24900
            18.12.30  Initial and final topologies   intopcoaconlem3b 24905
            18.12.31  Filters   efilcp 24919
            18.12.32  Limits   plimfil 24925
            18.12.33  Uniform spaces   cunifsp 24952
            18.12.34  Separated spaces: T0, T1, T2 (Hausdorff) ...   hst1 24954
            18.12.35  Compactness   indcomp 24956
            18.12.36  Connectedness   singempcon 24960
            18.12.37  Topological fields   ctopfld 24964
            18.12.38  Standard topology on RR   intrn 24966
            18.12.39  Standard topology of intervals of RR   stoi 24968
            18.12.40  Cantor's set   cntrset 24969
            18.12.41  Pre-calculus and Cartesian geometry   dmse1 24970
            18.12.42  Extended Real numbers   nolimf 24986
            18.12.43  ( RR ^ N ) and ( CC ^ N )   cplcv 25011
            18.12.44  Calculus   cintvl 25063
            18.12.45  Directed multi graphs   cmgra 25075
            18.12.46  Category and deductive system underlying "structure"   calg 25078
            18.12.47  Deductive systems   cded 25101
            18.12.48  Categories   ccatOLD 25119
            18.12.49  Homsets   chomOLD 25152
            18.12.50  Monomorphisms, Epimorphisms, Isomorphisms   cepiOLD 25170
            18.12.51  Functors   cfuncOLD 25198
            18.12.52  Subcategories   csubcat 25210
            18.12.53  Terminal and initial objects   ciobj 25227
            18.12.54  Sources and sinks   csrce 25232
            18.12.55  Limits and co-limits   clmct 25241
            18.12.56  Product and sum of two objects   cprodo 25244
            18.12.57  Tarski's classes   ctar 25248
            18.12.58  Category Set   ccmrcase 25277
            18.12.59  Grammars, Logics, Machines and Automata   ckln 25347
            18.12.60  Words   cwrd 25348
            18.12.61  Planar geometry   cpoints 25423
      18.13  Mathbox for Jeff Hankins
            18.13.1  Miscellany   a1i13 25567
            18.13.2  Basic topological facts   topbnd 25609
            18.13.3  Topology of the real numbers   reconnOLD 25622
            18.13.4  Refinements   cfne 25626
            18.13.5  Neighborhood bases determine topologies   neibastop1 25675
            18.13.6  Lattice structure of topologies   topmtcl 25679
            18.13.7  Filter bases   fgmin 25686
            18.13.8  Directed sets, nets   tailfval 25688
      18.14  Mathbox for Jeff Madsen
            18.14.1  Logic and set theory   anim12da 25699
            18.14.2  Real and complex numbers; integers   fimaxreOLD 25797
            18.14.3  Sequences and sums   sdclem2 25819
            18.14.4  Topology   unopnOLD 25831
            18.14.5  Metric spaces   metf1o 25836
            18.14.6  Continuous maps and homeomorphisms   constcncf 25845
            18.14.7  Product topologies   txtopiOLD 25853
            18.14.8  Boundedness   ctotbnd 25857
            18.14.9  Isometries   cismty 25889
            18.14.10  Heine-Borel Theorem   heibor1lem 25900
            18.14.11  Banach Fixed Point Theorem   bfplem1 25913
            18.14.12  Euclidean space   crrn 25916
            18.14.13  Intervals (continued)   ismrer1 25929
            18.14.14  Groups and related structures   exidcl 25933
            18.14.15  Rings   rngonegcl 25943
            18.14.16  Ring homomorphisms   crnghom 25958
            18.14.17  Commutative rings   ccring 25987
            18.14.18  Ideals   cidl 25999
            18.14.19  Prime rings and integral domains   cprrng 26038
            18.14.20  Ideal generators   cigen 26051
      18.15  Mathbox for Rodolfo Medina
            18.15.1  Partitions   prtlem60 26070
      18.16  Mathbox for Stefan O'Rear
            18.16.1  Additional elementary logic and set theory   nelss 26118
            18.16.2  Additional theory of functions   fninfp 26121
            18.16.3  Extensions beyond function theory   gsumvsmul 26131
            18.16.4  Additional topology   elrfi 26136
            18.16.5  Characterization of closure operators. Kuratowski closure axioms   ismrcd1 26140
            18.16.6  Algebraic closure systems   cnacs 26144
            18.16.7  Miscellanea 1. Map utilities   constmap 26155
            18.16.8  Miscellanea for polynomials   ofmpteq 26164
            18.16.9  Multivariate polynomials over the integers   cmzpcl 26166
            18.16.10  Miscellanea for Diophantine sets 1   coeq0 26198
            18.16.11  Diophantine sets 1: definitions   cdioph 26201
            18.16.12  Diophantine sets 2 miscellanea   ellz1 26213
            18.16.13  Diophantine sets 2: union and intersection. Monotone Boolean algebra   diophin 26219
            18.16.14  Diophantine sets 3: construction   diophrex 26222
            18.16.15  Diophantine sets 4 miscellanea   2sbcrex 26231
            18.16.16  Diophantine sets 4: Quantification   rexrabdioph 26242
            18.16.17  Diophantine sets 5: Arithmetic sets   rabdiophlem1 26249
            18.16.18  Diophantine sets 6 miscellanea   fz1ssnn 26259
            18.16.19  Diophantine sets 6: reusability. renumbering of variables   eldioph4b 26261
            18.16.20  Pigeonhole Principle and cardinality helpers   fphpd 26266
            18.16.21  A non-closed set of reals is infinite   rencldnfilem 26270
            18.16.22  Miscellanea for Lagrange's theorem   icodiamlt 26272
            18.16.23  Lagrange's rational approximation theorem   irrapxlem1 26274
            18.16.24  Pell equations 1: A nontrivial solution always exists   pellexlem1 26281
            18.16.25  Pell equations 2: Algebraic number theory of the solution set   csquarenn 26288
            18.16.26  Pell equations 3: characterizing fundamental solution   infmrgelbi 26330
            18.16.27  Logarithm laws generalized to an arbitrary base   reglogcl 26342
            18.16.28  Pell equations 4: the positive solution group is infinite cyclic   pellfund14 26350
            18.16.29  X and Y sequences 1: Definition and recurrence laws   crmx 26352
            18.16.30  Ordering and induction lemmas for the integers   monotuz 26393
            18.16.31  X and Y sequences 2: Order properties   rmxypos 26401
            18.16.32  Congruential equations   congtr 26419
            18.16.33  Alternating congruential equations   acongid 26429
            18.16.34  Additional theorems on integer divisibility   bezoutr 26439
            18.16.35  X and Y sequences 3: Divisibility properties   jm2.18 26448
            18.16.36  X and Y sequences 4: Diophantine representability of Y   jm2.27a 26465
            18.16.37  X and Y sequences 5: Diophantine representability of X, ^, _C   rmxdiophlem 26475
            18.16.38  Uncategorized stuff not associated with a major project   setindtr 26484
            18.16.39  More equivalents of the Axiom of Choice   axac10 26493
            18.16.40  Finitely generated left modules   clfig 26532
            18.16.41  Noetherian left modules I   clnm 26540
            18.16.42  Addenda for structure powers   pwssplit0 26554
            18.16.43  Direct sum of left modules   cdsmm 26564
            18.16.44  Free modules   cfrlm 26579
            18.16.45  Every set admits a group structure iff choice   unxpwdom3 26623
            18.16.46  Independent sets and families   clindf 26641
            18.16.47  Characterization of free modules   lmimlbs 26673
            18.16.48  Noetherian rings and left modules II   clnr 26680
            18.16.49  Hilbert's Basis Theorem   cldgis 26692
            18.16.50  Additional material on polynomials [DEPRECATED]   cmnc 26702
            18.16.51  Degree and minimal polynomial of algebraic numbers   cdgraa 26712
            18.16.52  Algebraic integers I   citgo 26729
            18.16.53  Finite cardinality [SO]   en1uniel 26747
            18.16.54  Words in monoids and ordered group sum   issubmd 26750
            18.16.55  Transpositions in the symmetric group   cpmtr 26751
            18.16.56  The sign of a permutation   cpsgn 26781
            18.16.57  The matrix algebra   cmmul 26806
            18.16.58  The determinant   cmdat 26850
            18.16.59  Endomorphism algebra   cmend 26856
            18.16.60  Subfields   csdrg 26870
            18.16.61  Cyclic groups and order   idomrootle 26878
            18.16.62  Cyclotomic polynomials   ccytp 26888
            18.16.63  Miscellaneous topology   fgraphopab 26896
      18.17  Mathbox for Steve Rodriguez
            18.17.1  Miscellanea   iso0 26903
            18.17.2  Function operations   caofcan 26907
            18.17.3  Calculus   lhe4.4ex1a 26913
      18.18  Mathbox for Andrew Salmon
            18.18.1  Principia Mathematica * 10   pm10.12 26920
            18.18.2  Principia Mathematica * 11   2alanimi 26934
            18.18.3  Predicate Calculus   sbeqal1 26964
            18.18.4  Principia Mathematica * 13 and * 14   pm13.13a 26975
            18.18.5  Set Theory   elnev 27006
            18.18.6  Arithmetic   addcomgi 27029
            18.18.7  Geometry   cplusr 27030
      18.19  Mathbox for Glauco Siliprandi
            18.19.1  Miscellanea   ssrexf 27052
            18.19.2  Finite multiplication of numbers and finite multiplication of functions   fmul01 27078
            18.19.3  Stone Weierstrass theorem - real version   stoweidlem1 27085
      18.20  Mathbox for Jarvin Udandy
      18.21  Mathbox for Alexander van der Vekens
            18.21.1  Restricted uniqueness and "at most one" quantification   rmoimi 27234
      18.22  Mathbox for David A. Wheeler
            18.22.1  Natural deduction   19.8ad 27236
            18.22.2  Greater than, greater than or equal to.   cge-real 27239
            18.22.3  Hyperbolic trig functions   csinh 27249
            18.22.4  Reciprocal trig functions (sec, csc, cot)   csec 27260
            18.22.5  Identities for "if"   ifnmfalse 27282
            18.22.6  Not-member-of   AnelBC 27283
            18.22.7  Decimal point   cdp2 27284
            18.22.8  Signum (sgn or sign) function   csgn 27292
            18.22.9  Ceiling function   ccei 27302
            18.22.10  Logarithm laws generalized to an arbitrary base   clogb 27306
            18.22.11  Miscellaneous   2m1e1 27311
      18.23  Mathbox for Alan Sare
            18.23.1  Conventional Metamath proofs, some derived from VD proofs   iidn3 27315
            18.23.2  What is Virtual Deduction?   wvd1 27390
            18.23.3  Virtual Deduction Theorems   df-vd1 27391
            18.23.4  Theorems proved using virtual deduction   trsspwALT 27642
            18.23.5  Theorems proved using virtual deduction with mmj2 assistance   simplbi2VD 27672
            18.23.6  Virtual Deduction transcriptions of textbook proofs   sb5ALTVD 27739
            18.23.7  Theorems proved using conjunction-form virtual deduction   elpwgdedVD 27743
            18.23.8  Theorems with VD proofs in conventional notation derived from VD proofs   suctrALT3 27750
            18.23.9  Theorems with a proof in conventional notation automatically derived   notnot2ALT2 27753
      18.24  Mathbox for Jonathan Ben-Naim
            18.24.1  First order logic and set theory   bnj170 27772
            18.24.2  Well founded induction and recursion   bnj110 27939
            18.24.3  The existence of a minimal element in certain classes   bnj69 28089
            18.24.4  Well-founded induction   bnj1204 28091
            18.24.5  Well-founded recursion, part 1 of 3   bnj60 28141
            18.24.6  Well-founded recursion, part 2 of 3   bnj1500 28147
            18.24.7  Well-founded recursion, part 3 of 3   bnj1522 28151
      18.25  Mathbox for Norm Megill
            18.25.1  Study of ax-6, ax-7, ax-11, ax-12   equidK 28152
            18.25.2  Derive ax-12o from ax-12   ax12vX 28198
            18.25.3  Derive ax-10   ax10lem16X 28252
            18.25.4  Derive ax-9 from the weaker version ax-9v   ax9X 28269
            18.25.5  Obsolete experiments to study ax-12o   ax12-2 28270
            18.25.6  Miscellanea   cnaddcom 28328
            18.25.7  Atoms, hyperplanes, and covering in a left vector space (or module)   clsa 28331
            18.25.8  Functionals and kernels of a left vector space (or module)   clfn 28414
            18.25.9  Opposite rings and dual vector spaces   cld 28480
            18.25.10  Ortholattices and orthomodular lattices   cops 28529
            18.25.11  Atomic lattices with covering property   ccvr 28619
            18.25.12  Hilbert lattices   chlt 28707
            18.25.13  Projective geometries based on Hilbert lattices   clln 28847
            18.25.14  Construction of a vector space from a Hilbert lattice   cdlema1N 29147
            18.25.15  Construction of involution and inner product from a Hilbert lattice   clpoN 30837

    < Wrap  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31321
  Copyright terms: Public domain < Wrap  Next >